Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 1067063, 2022.
Article in English | MEDLINE | ID: mdl-36483946

ABSTRACT

In wheat, lodging is affected by anatomical and chemical characteristics of the stem cell wall. Plant characteristics determining the stem strength were measured in lodging tolerant mutant (PMW-2016-1) developed through mutation breeding utilizing hexaploid wheat cultivar, DPW-621-50. Various anatomical features, chemical composition, and mechanical strength of the culms of newly developed lodging-tolerant mutant (PMW-2016-1) and parent (DPW-621-50), were examined by light microscopy, the Klason method, prostate tester coupled with a Universal Tensile Machine, and Fourier Transform Infrared Spectroscopy. Significant changes in the anatomical features, including the outer radius of the stem, stem wall thickness, and the proportions of various tissues, and vascular bundles were noticed. Chemical analysis revealed that the lignin level in the PMW-2016-1 mutant was higher and exhibited superiority in stem strength compared to the DPW-621-50 parent line. The force (N) required to break the internodes of mutant PMW-2016-1 was higher than that of DPW-621-50. The results suggested that the outer stem radius, stem wall thickness, the proportion of sclerenchyma tissues, the number of large vascular bundles, and lignin content are important factors that affect the mechanical strength of wheat stems, which can be the key parameters for the selection of varieties having higher lodging tolerance. Preliminary studies on the newly identified mutant PMW-2016-1 suggested that this mutant may possess higher lodging tolerance because it has a higher stem strength than DPW-621-50 and can be used as a donor parent for the development of lodging-tolerant wheat varieties.

2.
PLoS One ; 16(11): e0257115, 2021.
Article in English | MEDLINE | ID: mdl-34793445

ABSTRACT

Cymbopogon, commonly known as lemon grass, is one of the most important aromatic grasses having therapeutic and medicinal values. FISH signals on somatic chromosome spreads off Cymbopogon species indicated the localization of 45S rDNA on the terminal region of short arms of a chromosome pair. A considerable interspecific variation in the intensity of 45S rDNA hybridization signals was observed in the cultivars of Cymbopogon winterianus and Cymbopogon flexuosus. Furthermore, in all the varieties of C. winterianus namely Bio-13, Manjari and Medini, a differential distribution of 45S rDNA was observed in a heterologous pair of chromosomes 1. The development of C. winterianus var. Manjari through gamma radiation may be responsible for breakage of fragile rDNA site from one of the chromosomes of this heterologous chromosome pair. While, in other two varieties of C. winterianus (Bio-13 and Medini), this variability may be because of evolutionary speciation due to natural cross among two species of Cymbopogon which was fixed through clonal propagation. However, in both the situations these changes were fixed by vegetative method of propagation which is general mode of reproduction in the case of C. winterianus.


Subject(s)
Chromosomes, Plant , Cymbopogon/genetics , DNA, Ribosomal/genetics , RNA, Ribosomal, 5S/genetics , Chromosome Mapping , Karyotyping
SELECTION OF CITATIONS
SEARCH DETAIL
...